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Three-dimensional results are presented for a clipped delta wing with leading-edge
sweep of 50.5° with a circular-arc airfoil section and for an aspect ratio 5
rectangular wing with a NACA 64A006 airfoil section.

A conservative shock point operator was derived for use at a mesh point where the
steady flow is supersonic while the flow at the next point downstream is subsonic.



2.0 INTRODUCTION

The purpose of the work described in this report was to develop a means for caleulating
air forces for use in flutter analyses of three-dimensional lifting surfaces in the
transonic flight regime. Flutter is not only a significant problem at transonic speeds,
but it has also proved difficult to predict analytically. These difficulties result not only
from the mathematical complexities of the equations but also from computer resources
required by the repetitive nature of flutter analyses performed during vehicle design.

Various methods are currently under study for predicting unsteady transonic air forces,
ranging from the relatively expensive finite difference models including time
integrations to economical approximate procedures based on linear theory. The
procedure of this report is intended to be intermediate in terms of computer machine
resource usage and is based on a finite difference method developed by Ehlers in
reference 1. The assumption of small perturbations from a uniform stream near the
speed of sound retains the neceasary complexity for describing flows with local
supersonic regions. The application of the perturbation velocity potential restricts the
solution to weak shocks which, for thin wings of reasonably good design, is not too
limiting an assumption. When the flow is steady, the resulting nonlinear differential
equation reduces to the well-known transonic small perturbation equation studied by
Murman, Cole, and Krupp (refs. 2, 3, and 4). The unsteady differential equation is
simplified by considering the flow ito consist of the sum of two separate potentials
representing the steady and unsteady effects. The assumption of small amplitudes of
harmonic oscillation leads to a linear differential equation for the unsteady potential
with variable coefficients depending on the steady flow. The resulting air forces are
thus superposable and may be directly used in conventional flutter analysis
formulations.

The effect of thickness is included in the steady flow analysis. The unsteady analysis is
carried out for a wing of vanishing thickness but submerged in a velocity potential
distribution resulting from the steady analysis. As formulated, the shock is assumed to
be fixed by the steady flow. It is noted that shock motion could be included in a linear
fashion by introducing the perfurbations of the unsteady motion into the
Rankine-Hugoniot relations.

Generally, the results of applying this procedure, as reported in references 5 through 9,
have been encouraging. First, correlation of finite difference seolutions for flat plate
configurations with corresponding results from linear theory has been good for both
two- and three-dimensional configurations. For mixed flow, where the solutions for a
NACA 64A006 airfoil were compared with experimental data from Tijdeman and
Schippers (ref. 10), the pattern of the pressure distribution closely followed that
observed experimentally; however, the analytical pressure levels were generally higher
than the measured levels. The reason for the discrepancy between theory and
experiment is not known, but the discrepancy may be due to boundary layer or
separation effects, or both, or to unknown problems associated with the theory or with
the pregsure measurements. Thus, the correlation studies for the two-dimensional case
have been inconclusive because of the lack of knowledge of viscous effects and, for the
three-dimensional case, because of a lack of experimental pressure data.




A significant cause for concern in the practical application of this procedure has been
stability problems with the relaxation procedures used to solve the sets of finite
difference equations. These stability problems - which are a function of reduced
frequency, Mach number, and the size of the finite difference region - severely limit the
use of this method in flow regimes of most interest. Selution stability is thus & major
topic of this report.

Section 6.0 is devoted to a discussion of the accuraecy of solutions from the {inite
difference model in comparison with subsonic solutions for the flat plate. In addition,
results are presented {or a low-aspect-ratio delta wing and a moderate-aspeci-ratio
rectangular wing.

A parallel study using finite difference methods on the unsteady transonic flow preblem
has been conducted by Traci, Albano, and Farr (refs. 7, 8, and 9). The resulting
procedure concentrates in a consistent manner on the low-frequency regime. Their
derived equations do not include the cross product term consisting of the derivative of
the unsteady velocity potential ¢; with respect to time and of the second derivative of
the steady velocity potential ¢g with respect to the flow-wise coordinate. In most of
their applications, the second derivative with respect to time is left out. However, the
formulation of the finite difference equations, the handling of the boundary conditions,
and the use of a column line relaxation solution procedure appear very similar to the
procedure used here.
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3.0 SYMBOLS AND ABBREVIATIONS

Streamwise dimension of mesh region, also value of x at left hand side of
one-dimensional interval

Root semichord of wing, also vertical dimension of mesh region, also
value of x at right hand side of one-dimensional interval.

Maximum error quantity

Instantaneous wing shape defined by z, = 8f(x,y,t)

Function defining wing trailing edge

Undisturbed wing or airfoil shape

Unsteady contribution to wing or airfoil shape

Distance between mesh points in one-dimensional problem
x,¥,z subscripts for points in the mesh

Vi

Transonic parameter, (1-M2)/(M2e)

Dimensions of element used in residual discussion

Freestream Mach number

Overrelaxation factor

w®le — im(y-1) Poxx

Wall porosity parameter, also vector length used in Appendix B
Freestream velocity

Physical coordinates, made dimensionless with the root semichord.

Scaled coordinates (xg, pyg, uzg) for the three-dimensional problem; the
scaled coordinates for the two-dimensional problem are x and y, with x
again being the direction of fluid flow.

Variables of integration

Coordinates of leading and trailing edges

10T sireAmn near the




Y Coordinate of wing tip

o Angle-of-attack

™
Ig:j

¥ Ratio of specific heats for air

AC, Jump in pressure coefficient

Ad Jump in ¢; at plane of wing or vortex wake

A"G‘tc Jump in ¢, , at wing trailing edge

5 Thickness ratio or measure of camber and angle of attack
¢ (8/M)%/3

A oMA(1-M%)

M Scale factor on yp and zg, x = 5'/31v12/3

£l Dummy scaled coordinates for two-dimensional problem
4 Air Density

d Unscaled perturbation velocity potential

- Steady scaled perturbation velocity potential

ey Unsteady scaled perturbation velocity potential

Ply Wake integral defined in equation (B-1)

w Angular reduced frequency (semichord times frequency in radians per
second divided by the freestream velocity, wh/U)



4.0 FORMULATION AND SOLUTION

A detailed mathematical derivation of the method for the solution of the unsteady
velocity potential for the flow about a harmonically oscillating wing is presented in
reference 1. The discussion here will be limited to a brief outline of the procedure for
the two-dimensional flow.

The complete nonlinear differential equation was simplified by assuming the flow to be
a small perturbation from a uniform stream near the speed of sound. The resulting
equation for unsteady flow is

[K_(Fy- 1)‘Pt'(7+ 1) (Px] ¢Xx+(Pyy"(2 (pxt+(Ptt)/E=0 (1)

where K = (1 - M2)/M2¢, M is the freestream Mach number of velocity Up in the
x-direction, x and y are made dimensionless to the semichord b of the airfoil and the
time t to the ratio b/Uy. With the airfoil shape as a function of time defined by the
relation

yo = 6f(x,t)

the linearized boundary condition becomes

‘py = fx(xyt) + ft(x;t) . (2)

The quantity 8 is associated with properties of the airfoil (such as maximum thickness
ratio, camber, or maximum angle of attack) and is assumed small. The coordinate y is
scaled to the dimensionless physical coordinate yq according to

y=51/3M23y,

and ¢ is given in terms of § by
e=(8/M)2/3

The pressure coefficient is found from the relation
Cp =-2e (¢ top)

The preceding differential equation is simplified by assuming harmonic motion and by
assuming the velocity potential to be separable into a steady-state potential and a
potential representing the unsteady effects. We write for a perturbation velocity
potential

©=90 (x,y) + @] (x,y)elwt @
and for the body shape

yo = 8£(x,t) = 8] fg(x) + £ (el



Since the steady-state terms must satisfy the boundary conditions and the differential
equation in the absence of oscillations, we obtain

[K-(r+1eg 1wg  * P0yy " 0 @

with

=f =0, -1<x<
e, = fo, (), ¥ =0, ~1<x<1 ®)

On the assumption that the oscillations are small and products of ¢; may be neglected,
equations (1) and (2) with the aid of equations (4) and (5) yield

-(y+1 ) + - (2i + =0
{[K (v )*POXJ ‘Plxg . ¢lyy (lw/e)solx q ¥ -

where

q=w?fe-iw (y- 1) g
XX

subject to the wing boundary conditions

g =f; () +iwf;x), y=0, -1<x<I (7
Ly = Hy 1

A computer program for solving the steady-state transonic flow about lifting airfoils
based on equations (4) and (5) was developed by Krupp and Murman (refs. 3 and 4). The
output of this program or a similar program can be used in computing the coefficients
for the differential equation of the unsteady potential. The similarity of the unsteady
differential equation to the steady-state equation suggests that the method of column
relaxation used by Krupp for the nonlinear steady-state problem should be an effective
way to solve equation (6) for the unsteady potential ¢;. Note that equation (6) is of
mixed type; being elliptic or hyperbolic whenever equation (4) is elliptic or hyperbolic.
Central differencing was used at all points for the y derivative and all subsonic or
elliptic points for the x derivatives. Backward (or upstream) differences were used for

the x derivatives at all hyperbolic points.

The boundary condition that the pressure be continuous across the wake from the
trailing edge was found in terms of the jump in potential A¢; to be

Apy = Ap 10X te) @

where Agqte is the jump in the potential at x = x¢e just downstream of the trailing edge
and is determined to satisfy the Kutta condition that the jump in pressure vanish at the
trailing edge. The quantity Ag; is also used in the difference formulation for the
derivative ¢yyy to satisfy continuity of normal flow across the trailing-edge wake.
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For the set of difference equations to be determinate, the value of ¢, or its derivative
must be prescribed on the mesh boundary. Following Klunker (ref. 11), we found an
asymptotic integral representation for the far-field ¢; potential, and for the related
pressure potential ¢, +iwgp;. Because of the difficulty with convergence of the integral
over the wake for the integral equation of the velocity potential, upstream and
downstream boundary conditions for the mesh were given in terms of the pressure
potential ¢, + iwg;, for which the wake integral can be integrated in closed form. The
value of ¢, Was computed at one point on the upper boundary and at one point on the
lower boundary; the points were conveniently chosen to facilitate rapid convergence of
the wake integral. The values of ¢ at other points on the upper and lower boundaries
were found by numerically integrating the quantity ¢ 1y + iweg; with respect to x.

The numerical solution to the resulting large order set of difference equations may be
obtained by using a relaxation procedure. The initial solutions were obtained by using a
line relaxation procedure. Convergence is determined by monitoring ERROR, the
maximum change in the velocity potential between iteration steps. ERROR is defined
as the maximum value over all i and j of

kplij(n) "p1i~(n_l)
J

r

n) (n-1)

where ‘Plij( is the unsteady velocity potential for the nth iteration, P15
corresponding potential for the preceding iteration, and r is the relaxation factor. The
solution was considered converged when ERROR =< 107°. In some cases, particularly for

finer meshes and for the pitch mode, convergence was considered complete when
ERROR <1074,



5.0 RELAXATION SOLUTION STABILITY

As discussed in a preceding NASA report by the authors (ref. 5), significant stability
problems were encountered with the relaxation procedures used to solve the finite
difference equations. Generally, these procedures paralleled those successfully used for
the steady-state problem. In essence, this meant sweeping through the mesh with a line
relaxation procedure. When the line of points was parallel to the freestream, it was
called row relaxation; when the line was perpendicular to the flow, it was called column

relaxation.
The characteristics of the solution instability are as follows:

1. It occurs with the flow is purely subsonic as well as mixed with locally supersonic
regions. Thus, the instability is not dependent on the presence or absence of

transonic shock flow.

2. It appears to be a function of A\; = «M/(1 - M?) and the size of the finite difference
area for the two-dimensional problem or volume for the three-dimensional problem.
An analysis of the flat plate with a uniform mesh yields for the critical value of Ay,
the value of A; above which the relaxation solution is unstable,

A L + 1 12 10
= 7T —— —_—
Ieritical [32 sz] 10
where a is the streamwise dimension of the mesh region, b is the height, and K is
the transonic parameter.

3. For a given condition (say a fixed Mach number and finite difference point setup),
as Ay was increased the rate of convergence decreased until the solution started to
diverge. Thus, the actual value of Ay for which the solution first diverges is
ill-defined, although it is generally in the neighborhood of the value given by
equation (10).

Some insight into the causes of the instability may be obtained by considering the
Helmholtz equation into which the difference equation for the oscillating flow over a
flat plate may be transformed, namely,

2=
Xxx+xyy+)\1 x=0 (11)

It is well known that solutions to the Helmholtz equation may not be unique for given
types of boundary conditions on a closed region since eigenfunctions with real
eigenvalues can occur; i.e., functions representing standing waves for which
homogeneous boundary conditions occur on the boundary. For the rectangular mesh
area of width b and length a, the first eigenvalue associated with solutions of the
Helmholtz equation with Dirichlet boundary conditions is the critical value of A\ just

10



presented. In terms of the relaxation procedure, it was shown in reference 5 that
solution of a relaxation problem of the form

(A {er} = {R} (12)

converges only when [A] is positive definite, and this holds for the unsteady problem
when A; i8 less than Ajcritical-

Integral equation solutions currently in use for the linearized subsonic unsteady

solutions employ only the outgoing wave solution for the kernel function. Similarly the
outgoing wave solution is used to define Klunker-type (ref. 11) boundary conditions on
the outer boundary of the mesh region. Apparently the incoming wave solution is picked
up during the numerical solution.

Investigations to remove or moderate the relaxation solution stability problem may take
any of several paths. The approaches discussed here include (1) modifying the boundary
conditions with the hope that the numerical solution would pick up only the outgoing
wave solution, (2) using a coordinate transformation so that boundary conditions in the
physical plane at infinity could be applied to the outer boundaries of a finite mesh
region, (3) replacing the iterative relaxation solution with a full direct solution and
thus solving for all the unknown velocity potentials at one time, and (4) using an
overlapping subregion concept.

Approaches that have also been considered to some degree and have not proved
successful include the following:

' Artificial manipulation of elements in [A] in order to provide a better conditioned
matrix. In particular, an attempt was made to shift the eigenvalues of [A] by
addition of a large diagonal matrix to [A] (Such an addition must, of course, be
compensated for by appropriate modification of the right-hand side of the system.)
This modification did not improve the stability or convergence properties of the
solution method. Subsequent theoretical investigations revealed that such a
modification is essentially equivalent to doing underrelaxation on the original
system.

e A sequential mesh refinement system based on the procedures discussed by Brandt
in reference 12.

. A mathematical technique for making [A] positive definite for values of A; above
A critical by premultiplication by the conjugate transpose of [A] This procedure
and some results are presented by Hafez, Rizk, and Murman in reference 13. Our
experience has been essentially the same as they describe; (i.e., that the
convergence rate in the relaxation solution of the [A * A} system is very slow and
that a small value for the maximum difference between iterations does not imply
that the last iteration is correspondingly close to the true solution.

11



5.1 VARIATIONS IN OUTER BOUNDARY CONDITIONS

The Klunker-type boundary conditions defined ¢; on the upper and lower boundaries
and set ¢;x + iwe; on the upstream and downstream boundaries of the finite difference
region. Since these boundary conditions apparently did not effectively sort out the
incoming waves from the outgoing waves, alternative conditions were explored. These
included using an outgoing radiation-type condition on all four boundaries and also a
porous wall boundary condition on the upper and lower boundaries. The mathematical
forms for these boundary conditions are summarized in table 1. The porous wall
conditions could be varied to form either a “free jet” by making the porosity parameter,
R, very large or a “solid wall” condition by making R small. In practice, the parameter
is usually fixed by some empirical method for specific wind tunnel conditions but, for
the current work, the interest is on how the stability of the relaxation solution may be

dependent on its value.

Table 1.—Equations for Boundary Conditions

Boundary conditions Boundary Equation
. H M —_ 0
1. Outgoing wave Upstream b1x 1@ T 1 =
+i M =0
Downstream ¢1x |w1TM—-¢1 =
iwyK
Upper b1yt V—z_ ¢4 =0
1-M
LK
Lower b, - ¢)1 =0
oy w2
. 1
2. Porous wall Upper D1y Tiwdy +E¢1Y =0
. 1
Lower b1y Tiwdy 'ﬁ¢1y =0

The pilot program was modified so that all six combinations of outer boundary
conditions shown in table 2 could be run; that is, either of the two conditions on the
upstream and downstream boundaries could be run with any one of the three boundary
conditions specified for the upper and lower boundaries. The free-jet and solid wall
boundary conditions also were programmed explicitly and thus could be applied without
the need for fixing a value for R. The test example consisted of a two-dimensional airfoil
of vanishing thickness oscillating in harmonic pitch at a Mach number of 0.9. For this
case and for the mesh dimensions that are used, the reduced frequency above which
relaxation solutions are expected to be unstable according to equation (10) is about 0.1.
The examples were run for a very coarse mesh (17 x 10), and the overrelaxation factor
(ORF) was varied to make sure the solution instabilities were not due to too large an

ORF.
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Table 2.—Types of Boundary Conditions

Upstream and

downstream Upper and lower

boundaries boundaries
1. Klunker 1. Klunker
2. Qutgoing wave 2. Porous wall

Free jet (large R)
Intermediate
Solid wall {small R)

3. Outgoing wave

In summary, the results of the calculations showed that the alternate boundary
conditions used did not significantly improve the convergence of the solution. In some
cases, a slight increase in the value of reduced frequency was observed for which
convergent solutions could be obtained. No combination of boundary conditions would
provide solution convergence above a reduced frequency of 0.18. Since the exact values
of w at which a relaxation solution stops converging and starts diverging cannot be
exactly determined anyway, the results of this investigation were not considered
promising.

5.2 COORDINATE TRANSFORMATION

A second concept explored in hopes of removing the relaxation solution stability
problem was a coordinate transformation that permits the boundary conditions at
infinity to be used on the boundaries of the finite difference region; that is, the physical
region to infinity is mapped into the limited area of the finite difference mesh in the
calculation plane. The particular form of transformation that was used is that suggested
by Carlson (ref. 14) which, as he points out, allows for a physically realistic behavior of
the solution at infinity. The physical plane is divided into three regions by
perpendicular lines through the leading and trailing edges of the airfoil. (See fig.1.) The
physical plane coordinates (x,y) are related to the calculation plane coordinates (£,3) by
the following relations:

In region I where £<-1
x=-1+ tan[—g— (£ + 1)] + tan[%(g + 1)3]

In region II, where -1<¢<1

e (%) (552) )

13
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x=-1 X =+1

Figure 1.—Subdivision of Flow Field for Coordinate Transformation



In region III, where 1<¢

x =1+ tan [lzr—(s- 1)] + tan[% (¢- 1)3]

and

y=tan12r-n

Two different boundary conditions were used. The first consisted simply of making ¢ = 0
on all four boundaries; the second, of using the outgoing wave conditions discussed in
the preceding section. Here, the outgoing wave condition was applied at the midpoint
between the boundary and the point adjacent to the boundary.

These changes did not solve the relaxation solution stability problem. For a given Mach
number, for example, relatively little (if any) change was noted in values of reduced
frequency at which the solution became unstable.

It is of interest to note that the combination of the coordinate transformation and the
outgoing wave boundary condition provided results for the flat plate which very closely
matched corresponding data from the NASA subsonic air force program (refs. 15 and
16). A comparison of results from using outgoing wave conditions together with the
coordinate transformation is shown in figure 2. It should be noted that the former
results are for a 42 x 30 mesh while the latter results are for a significantly coarser 28
x 20 mesh.

5.3 COMPLETE DIRECT SOLUTION

A “semidirect” solution procedure was examined by the authors in reference 5. The form
of the equation solved at that time was

[A(xm{ oM} = {R(m(“‘”)]

where {‘Pl(n)} contained an element for each interior mesh point. In other words, there
was still an iteration required to update the vector {R(qol(n'l))} on the right-hand side.
Although very efficient for the small meshes for which it was used (i.e., permitted by
the in-core solution capability), it was subject to the same type of solution instability as
the relaxation solutions. However, it is possible to rewrite the equation so that all
unknowns are on the left-hand side and the solution may be calculated without
iteration.Consider, for example, the two-dimensional problem for purely subsonic flow.
The mesh is set up to have IMAX points in x-direction and KMAX in the cross-flow
direction. The points are sequenced by column, upstream to downstream. The unknowns
consist of the ¢¢’s interior to the outer boundaries. Thus, the indice N of the point LK is

N = (KMAX-2)* (I-2) + K

for 2< I = IMAX-1 and 2 = K = KMAX-1

15
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Linear theory

25 (~
o ® Outgoing wave boundary
F.“’"te conditions with coordinate
difference transformation, 28 x 20 mesh
theory
20} A Klunker-type boundary
conditions, 42 x 30 mesh
15 b=
Mach number = 0.9 10—
Reduced Frequency, w = 0.06
Pitch about leading edge
In-phase
5 e
ACp
o k-
-1.0 - . 1.0
.‘5 p—
10—
-16%

Figure 2.—Jump in Pressure Coefficient Across a Flat Plate
Oscillating in Pitch, M = 0.9, «w> = 0.06

The general form of the equation following eq. (24) of reference 1 (with all terms moved
to the left-hand side) for points adjacent to the boundaries is of the form

Dei-1k + Agik-1 + Boik+ Coik-1 + E@j+1k = 0

With the sequencing as indicated above, the five terms in the coefficient matrix are in
the following column locations:

np = KMAX* (I-3) + K
ny = KMAX* (I-2)+K-1
ng = KMAX* (I-2) + K
nc = KMAX* (I-2) + K + 1
ng = KMAX* (-1) + K




The bandwidth of the matrix is equal to ng-np+1 or 2% JMAX-2) + 1. The
boundaries present special problems. For example, the ¢;’s adjacent to the wake, in
addition to the usual dependency, are also functions of eight values of ¢; at mesh points
in the vicinity of the wing trailing edge (see eq. (41), (42), (85), and (86) of ref. 1). This
significantly increases the bandwidth of the coefficient matrix. The ¢;’s for points on
the outer boundaries are, using Klunker-type boundary conditions, functions of the ¢;’s
at all other interior points in the mesh if the volume integrals are retained (see eq (110)
and (114) of ref. 1). If the volume integrals are not retained (and this is the usual
procedure), the boundary ¢;’s remain functions of the A¢;’s across the wing and wake.
Use of the outgoing wave boundary condition limits the dependency of the ¢, for any
point on the outer boundary to the immediate vicinity of that point. The bandwidth of
the coefficient matrix is thus determined by the number of points in the wake. This
complete or full direct procedure should provide answers over the full range of values
except for the specific values of A; for which the matrix [A(/\l)] is singular.

This procedure was first tested with a one-dimensional problem. There was no difficulty
in obtaining solutions near the singular points. Accuracy, however, as measured against
the analytic answers, did present difficulties, which are discussed in detail in section 5.

The full direct solution was also investigated for the two-dimensional problems. One
formulation included the coordinate transformation and the outgoing wave boundary
conditions discussed previously. Use of the latter significantly reduced the bandwidth of
the [A] matrix over what it would have been had Klunker-type outer boundary
conditions been used, thus increasing the number of mesh points that could be handled
by the in-core solution routines.

The resulting program was used on the sample problem of the airfoil of vanishing
thickness oscillating in pitch. As with the one-dimensional program, no trouble was
encountered in obtaining solutions at frequencies well above values that had proved
critical for the relaxation solution. However, once the neighborhood of the critical value
had been reached or exceeded, very poor correlation with corresponding solutions from
the NASA subsonic unsteady flow program was obtained; that is, as the value A; was
increased from subcritical values to supercritical values, correlation with the NASA
program went from very good to very poor. The characteristics of this lack of correlation
are discussed in detail in section 6.

The original direct solution package did not contain a pivoting capability. Since concern
was expressed about numerical accuracy of the solution in the neighborhood of the
matrix singularities, a solution routine including partial pivoting with equilibration
was inserted in the program. Although it could be determined that pivoting was used
during the solution, the results remained exactly the same to the number of significant
digits retained.

In summary, the full direct solution provides solutions at values of A; above the critical
value. The solutions do not correlate well with corresponding solutions from the NASA
subsonic unsteady flow program and are thus not considered reliable. Although these
solutions have been obtained using routines that include partial pivoting, the lack of
correlation does not appear to be due to numerical problems inverting the matrices. The

17
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problem may be due to the restriction to a relatively coarse grid because of a limitation
of the in-core solution routine and/or to the type of boundary conditions. This seems to
be borne out by the results from the study of the one-dimensional problem for which an
error analysis is easy to obtain. This is discussed in detail in section 6.

5.4 OVERLAPPING REGIONS

As noted in the general description of the relaxation solution stability problem at the
beginning of this section, the critical value of \; is inversely proportional to the size of
the finite difference region over which the solution is being calculated. This fact
suggested the possibility of solving a sequence of small overlapping regions. The critical
value of A; for each subregion would be large, and perhaps continuity between
subregions could be achieved by iteration. In a sense, the basic line relaxation
procedure (whether accomplished by rows or columns) is the extreme limit of this
concept with each column or row acting as a separate subregion. Experience has already
shown us that this does not work.

However, some examples have been run using column relaxation with the finite
difference solution region divided into two and three subregions vertically and with
several variations in the amount of overlapping of the subregions. All results have been
discouraging and there appears to be little point in extending this investigation further.
A typical example using three subregions will be discussed next.

This example is for a flat plate (no mixed flow) and a relatively coarse mesh (17 x 10),
but it should provide a good indication of how the concept of overlapping regions will
work. The solution region was divided into three subregions in the streamwise
direction. The location of the mesh points in the x-direction and the corresponding
indices are shown in figure 3a. Figure 3b presents a sequence of convergence histories
with the range of x-indices over which the column relaxation solutions were performed
indicated below each pass. First, the solution for the complete region was calculated to
check solution stability. As shown in figure 3b, with an ORF of 1.0, the solution at first
converges slowly but after some 90 iterations has started to diverge. Using an ORF of
1.7, the solution is quite unstable and shows a general divergence trend. Included in the
same figure are the convergence histories for the subregions. The calculation is started
off by converging the middle section, which converges very rapidly. an ORF of 1.7 was
used for this and all succeeding calculations. Then, as shown, the other sections were
converged in succession. The ¢; distribution was saved after each subregion solution
and used as a starting point for the next solution. The overall convergence of the
system, as noted from the starting error for each subregion solution, is marginal at best
and would require many more solution sequences to determine whether the overall
trend is convergent or divergent.

Finally, the pressure plots for three different stops along the solution path are shown in
figure 3c. These distributions do not appear to be converging either. This example is not
considered to be completely conclusive as to the worth of the overlapping subregions
concept. It is typical of what we have experienced with other similar examples. We have
found no evidence that this concept would provide a practical means to avoid problems
arising from relaxation solution instabilities.
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6.0 NUMERICAL ACCURACY FOR LARGER VALUES OF Ay

The accuracy of the finite difference procedure of this report may be discussed in several
different contexts. Previous reports (by the authors in refs. 1, 5, and 6 and Traci et al,
in refs. 7, 8, and 9) have included numerical examples, the results of which are
compared either with the experimental data of Tijdeman and Schippers (ref. 10) or with
other analytical data. These analytical data may be for strictly subsonic flow (flow at
high Mach number over a flat plate) or for more detailed transonic calculations
- including full shock effects such as those by Magnus and Yoshihara (ref. 17). The
discussion here concentrates on the relationship between the critical value of A (critical
in terms of relaxation solution stability) and the accuracy of the finite difference
solutions relative to more exact linear solutions. The examples to be discussed do not
include shock effects.

6.1 THE ONE-DIMENSIONAL PROBLEM

In order to gain insight into the unsteady transonic problem as formulated in this
report, a one-dimensional version of the flat plate problem was investigated. The
one-dimensional analog of the two-dimensional equation (6) for a flat plate may be
obtained by dropping the ¢1,,y, term. Dividing the resulting equation by K, we have

. (13)
2N Mo, +A2(1-M2)yp, =
Plyy  AM Mo +X37(1-M5) 9 =0
where Ay = oM/(1 - M2).
The exact general solution to equation (13) is
iNp (1+M)x -y (1- (14)
‘PI(X)ZCIG 1( ) +C261 1( M)x

where Cy and Co may be determined once the boundary conditions (end conditions) are
specified. The derivation of equations (13) and (14) along with a detailed discussion of
the exact general solution is presented in appendix A. An approximate solution over an
interval [a,b] may also be found by transforming equation (13) to a finite difference
equation with the solution being obtained by either a full direct solution (similar to that
discussed in sec. 5.3) or by a point relaxation procedure.

The interest here is in comparing answers obtained from the finite difference solution
with corresponding answers from the exact solution. For this, the maximum error
quantity E for a given reduced frequency wg, is defined as

' (15)
E(w) =1 1 h ?1 v
I=1,IMAX Texact Ifinite difference
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The investigation is aimed at determining the effect of the kind of boundary conditions
used on E(wg). First, it is clear from the exact solution that the solution for a given
reduced frequency w or Ay is made up of components with two substantially different
wavelengths. For a given finite difference mesh (a given number of mesh points and
specified mesh spacing), it would be expected that the short wavelength component
would be less accurately represented than the long wavelength component; that is, a
solution made up predominately of the short wavelength component would be less
accurately determined using a finite difference calculation than a solution made up
predominately of the long wavelength component. This has indeed proved to be the case
as shown by examples presented in figure 4. Here two combinations of Dirichlet and
Cauchy boundary conditions were used to obtain solutions. The first was set up so that
the solution would consist solely of the short wavelength component and is denoted by
the A-symbols in figure 4; and the second, set up so that the solution would consist
solely of the long wavelength component, is denoted by the O symbols. The error level
for the long wavelength component is significantly lower than that for the short
wavelength component.
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Figure 4.—Comparison of Error Curve for Long and Short
Wavelength Solutions
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Second, it is of interest to know how the error varies with frequency. An analysis of a
similar equation was made by Fischer and Usmani in reference 18. The equation
studied was of the form

16
Yxx T 2y=0 19

and is simply related to our one-dimensional ¢ equation by the transformation
i\ | Mx an

01 = Ye

Application of their analysis, based on equally spaced mesh points, to equation (16)
shows that for small values of hiy, where h is the distance between adjacent mesh
points and Dirichlet end conditions

Eh?a,3
E@) <E1~Gna, (b-a)] (18)
for some constant E independent of the reduced frequency and mesh spacing. In view of
the close relation between the ¢; and ¥ equations, we would expect the error behavior
in the finite difference solution to be similar in both cases. Equation (18) displays
several interesting characteristics. For example, the predicted error is directly
proportional to the square of the mesh point spacing h and the third power of A; or, for
fixed Mach number, the third power of the reduced frequency w. Also, the presence of
the sin [)\l(b - a)] in the denominator of the equation introduces singularities in the
error curve at values of w (or Ay) for which Ay(b-a) = nm,n = 1,2,... These values of A,
correspond to eigenvalues of the analytical solution (eq. (14)): i.e., are values of Ay for
which there is no unique analytical solution. Except near these singularities, the error
curve as a function of Ay behaves like A{" times a slowly varying modulation factor.
Thus over much of the range of A the error is essentially proportional to A;~. Very near
A1 = O, the error is of course essentially proportional to A{“since x/sin x-1 as x~0.
This region is of little interest to the eigenvalue analysis, however. In view of the close
relation between ¢ and ¢ equations, it is expected that the error behavior would also
be the same for ¢q.

The presence of the singularities in the curve of ERROR versus reduced-frequency is
shown in figure 5 by the A-symbols. It would appear that the eigenvalues for the
analytic system do not coincide exactly with the eigenvalues for the finite difference
system, as noted by the distortions in the curves with which the points have been
connected. The calculation was set up so that E(wg) would be evaluated at five points
between each analytic eigenvalue. The singular behavior is the result of the evaluation
of C; and Cy from a set of simultaneous equations that are a function of the applied
boundary conditions. This set of equations may be written in the form

laapi{C}={r}
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Yielding All-Real and Complex Eigenvalues

where a is a 2 x 2 matrix that is a function of A; (or w), C is the two-element column
matrix made up of C; and Cy. The forms of « and vy are a function of the nature of the
boundary (end) conditions; i.e., whether they are Dirichlet, Neumann, or Cauchy.
Moreover, for certain values of Ay, the determinant of a will be equal to zero. These
certain values are eigenvalues. For values of Ay that correspond to eigenvalues, the
solution for Cy and Cop is not unique; that is, for A; equal to eigenvalues, there is no
unique solution to equation (13).

It is interesting to note that the values of A, which are eigenvalues of «, may be either
all-real or complex depending on the nature of the boundary conditions. It is readily
shown that Dirichlet conditions on both ends or Neumann conditions on both ends lead
to all-real eigenvalues. However, for certain combinations, such as mixed conditions
(Dirichlet on one end and Cauchy on the other), the eigenvalues may be made complex.
Under these circumstances, we would not expect the violent peak and valley behavior of
the error plots that result from the all-real eigenvalues. This is indeed confirmed with
the results shown in figure 5 when the boundary conditions are such as to yield complex
eigenvalues.



This problem was originally studied to see if it would shed light on the relaxation
solution instability problem. In particular, it was of interest to see if relaxation
solutions could be obtained for boundary (end) conditions for which the eigenvalues are
complex. However, tests with a relaxation solution of the one-dimensional system have
not converged and thus having complex eigenvalues does not seem to materially affect
the convergence.

In addition it was noted that equation (18) implied that the error was essentially
proportional to )\13 or ©°. An example of this is shown in figure 6 where an error curve
for an example in which the singularity behavior has been suppressed is compared with
a curve proportional to »°. The correlation between the two is very good. Also included
is a curve that is proportional to w4, as predicted by a conventional truncation analysis
of the finite difference equation.
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Figure 6. —Variation of Error Curve With Reduced Frequency



In summary, analysis and experiment of the one-dimensional equation show that the
error from the finite difference solution is essentially proportional to h2>\13, and thus
the number of points has to be expanded (or more specifically the mesh spacing reduced)
in proportion to the 3/2 power of the frequency in order to retain accuracy. The level of
the error is determined by the boundary conditions and, in turn, determines the relative
contributions to the solution by the long and short wavelength components. The
relatively larger part the long wavelength component plays, the smaller the level of
error. Superposed on this general error curve can be a series of peaks and valleys with
the peaks centered around the values of Ay (or ) that correspond to the real
eigenvalues of the system of finite difference equations and are dependent on the
boundary conditions. If the eigenvalues are complex, the peak-valley behavior of error
curve is suppressed.

These results would indicate that, for certain choices of boundary conditions and
sufficiently fine mesh spacing, adequately accurate results may be obtained in the
two-dimensional case using a full direct solution method.

6.2 TWO-DIMENSIONAL EXAMPLES

As noted in section 5.3, a complete direct solution using outgoing wave boundary
conditions permits obtaining solutions at large values of reduced frequency, and
solution stability no longer is a problem. However, for the mesh sizes used, the
correlation between the finite difference solutions and linear theory becomes very poor.
Results are presented here for a two-dimensional airfoil of vanishing thickness
oscillating in pitch in a freestream of M = 0.9. Under these conditions, relaxation
solutions would be expected to be unstable at reduced frequencies (based on the
semichord) above approximately 0.12 according to equation (10). Results were obtained
using both the linear theory program and the finite difference program. Very good
correlation between the two theories was obtained at » = 0.06 (see fig. 2), and very poor
correlation at @ = 0.3 as shown in figure 7. The correlation was significantly degraded
even at w = 0.09 as shown in figure 8. To test whether this phenomenon was a function
of A1 rather than w, the same problem was rerun at a Mach number of 0.4 with reduced
frequencies so that the values of Ay were the same. Correlation between results from
linear and finite difference calculations, as shown in figures 9 and 10, was good for
w = 0.6 (corresponding to w = 0.06 at M = 0.9) and poor at o = 0.9 (corresponding to
o = 0.09). The results at @ = 3, which are not shown, were very bad. Thus, the results
from the full two-dimensional transonic problem (although with nonmixed flow) appear
to follow the same pattern as the results from the very simplified one-dimensional
example. Indeed, the poor results appear to be due to the same cause as the peaks in the
error curve shown in figure 5, but this requires further study. In particular, since the
true eigenvalues of this problem are not known, it is difficult to assess whether the
higher frequencies tried are near eigenvalues without further investigation of the
sensitivity of accuracy as a function of frequency.

These results were checked using a direct solution routine incorporating partial
pivoting with equilibration. The results were not changed, although it was possible to
tell that the pivoting portion of the routine had been used. Thus, the errors encountered
with the two-dimensional calculations do not seem to be due to numerical problems
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resulting from ill-conditioned matrices. Increasing the number of mesh points in order
to improve correlation was not feasible with available computer resources. Decreasing

the number of mesh points would not have provided a realistic representation of the
physical problem.
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7.0 THREE-DIMENSIONAL PROGRAM STUDIES AND
ANALYSES

Modifications to the three-dimensional program as described in reference 5 are
described in section 7.1. The results of applying the resulting program to the NASA
transonic unsteady pressure model of low-aspect ratio clipped delta planform are
presented in section 7.2. Section 7.3 presents results for a moderate-aspect-ratio
rectangular wing.

7.1 THE THREE-DIMENSIONAL PROGRAM

The pilot three-dimensional program as described in reference 5 was restricted to lifting
surfaces with rectangular planforms. This prograim has been revised, and its design and
usage documented in reference 19. The revised program is valid for wings with
aft-swept leading and trailing edges. The leading edge may be curved (of arbitrary
shape), but the trailing edge must be straight. This last limitation is due to the method
of programming rather than being a restriction on the theory. In addition, the program
has been revised to:

1. Include the capability for row relaxation as well as the original column relaxation

2. Make use of the anti-symmetry characteristics of the unsteady flow about
symmetric wings so that only half the flow is actually calculated

Row relaxation proved much faster than column relaxation for the two-dimensional
problem. The same appears to be true from the minimal number of three-dimensinoal
examples we have run. However, it should also be noted that solution instabilities have
again been encountered in the mixed flow case, and the results of the following section
for the configurations with thickness were obtained using column relaxation. It was
noted in reference 5 that, for the two-dimensional problem, row relaxation was much
more efficient than column relaxation in terms of reaching a specified degree of
convergence in a minimum number of iterations. It was determined that in using row
relaxation for mixed flow, additional terms must be included in the finite difference
equation for hyperbolic points to avoid solution instabilities. These additional terms
have not proved enough to avoid instabilities in the three-dimensional row relaxation
solution, and it is assumed that the two-dimensional analysis of reference 5 should be
extended to the three-dimensional equations.

A derivation of the wake integral for a straight trailing edge perpendicular to the wing
root was given in appendix B of reference 5. A general form, valid for wings with
trailing edges, that may be described by a single valued function of the form

xg (N =1+ (y)
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where f(y) =0, is derived in appendix B of this report. The resulting form again makes
use of Gauss-Laguerre integration and is directly parallel to the form derived in
reference 5 for the trailing edge of an unswept rectangular wing.

The three-dimensional program, which is considered to be a pilot program, has been
provided to NASA-Langley and is documented in reference 19. The program has been
modified and permits calculations including swept leading edges while using an
unswept rectangular mesh point array.

7.2 RESULTS FOR A DELTA WING

This section presents the results of applying the pilot three-dimensional program to a
wind tunnel model built by NASA-Langley for testing in the Langley Transonic
Dynamics Tunnel. The model has a clipped delta planform with a 50.5 swept leading
edge and a circular-arc profile with a thickness ratio of 6%. The model geometry is
shown in figure 11. The model is designed to be oscillated in pitch and flapping, and
every effort has been made to minimize the structural deflections resulting from these
rigid body motions. The model is half-span and is mounted on the side of the tunnel
through a splitter plate designed to remove the wall boundary layer.

The calculations were performed at M = 0.9 for the wing oscillating in pitch and
flapping at a reduced frequency based on the root semichord of 0.06.

The steady-state pressure distribution for the wing is shown in figure 12. It was
calculated using a program developed at NASA-Ames by Ballhaus and Bailey (ref. 20)
and modified by The Boeing Company. It does not include a shock point operator. The
ideas of Schmidt (ref. 21) were used to set up the mesh along the swept leading edge.
The calculations were made for a mesh with 55 points in the flow direction, 32 points in
the spanwise direction (half-span), and 36 points in the vertical direction. Convergence
for the pitch mode and the flat plate configuration with ERROR =< 10 and using row
relaxation was obtained in about 100 iterations. Starting with this solution and using
column relaxation, about 50 iterations were needed to obtain the solution for the
circular-arc airfoil shape. With solutions calculated assuming symmetry with respect to
the x-y plane and using a CDC 6600 computer with an FTN compiler, the number of
CPU seconds per iteration was about 7 and the number per far-field update was about 9.

The jump in pressure coefficient due to harmonic pitch and flapping is presented in
figures 13 and 14. In each case, three different results are presented. The first result is
from using the NASA subsonic unsteady three-dimensional airloads program (refs. 15
and 16). This should compare directly with the second set of results, which are the finite
difference results for a flat plate. The third data set is from using the finite difference
program for the wing with the coefficients of the differential equation obtained from the
nonlinear steady-state solution from the transonic small perturbation theory.

Generally, linear results correlated very well with the corresponding finite difference
results for a flat plate. This was particularly true for the pitch mode and only slightly
less so for the flapping mode. Note that the scale used for the real part of the flapping
mode is significantly larger than the scale used for the imaginary part. The failure of
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the finite difference solution to provide a singularity at the wing leading edge at the
root is attributed to the relative sparsity of points over the apex of the wing. In setting
up the finite difference pattern, it was decided to emphasize the points on the aft
portion of the wing and in the wake. From practical considerations, then, the planform
apex was somewhat slighted in terms of points.

The finite difference solution with thickness showed the usual peaks in the unsteady
pressure in the region of the shocks as calculated in the steady flow. No experimental
data are available at this time for comparison purposes.

Results for the delta wing at an angle of attack are presented in figure 15. The first set
of results was obtained using the nonlinear steady-state finite difference program for an
angle of attack of 1.5°. The results are presented as jump in pressure coefficient per
unit radian. The results from the nonlinear steady-state program were not fully
converged; however, estimated converged results were indicated in the neighborhood of
the shock as obtained using the Aitken-Shanks nonlinear transformation (§”-process) of
reference 22. The second set of results was from the unsteady program using a pitch
mode and a very small reduced frequency of @ = 0.00001. Only the real part of the
resulting presure vector is plotted. The thickness effects in the unsteady program
resulted from the steady velocity potential at zero angle of attack from the nonlinear
program. The computer resources required to obtain the set of results from the linear
unsteady program were significantly less than those required for the results from the
nonlinear steady program.

The pressure coefficient distributions from the two solutions exhibited the same
characteristics with greater amplitude in the shock region for the linear unsteady
solution for a very small frequency than for the steady nonlinear solution. Both
solutions were obtained without using a shock point operator.

7.3 RESULTS FOR A RECTANGULAR WING

The revised three-dimensional program was also used to recalculate the pressure
distribution over an aspect ratio 5 rectangular wing oscillating in harmonic pitch. A
Mach number of 0.875 was used with a reduced frequency based on the root semichord
of 0.06. These results as presented in references 5 and 6 were calculated using an
incorrect scale factor on the steady-state velocity potential distribution. The effect of
correcting this scale factor is to provide a noticeably larger pressure rise due to the
presence of the shock. There still remains, however, a significant attenuation of this
rise in going from the two-dimensional to the three-dimensional configuration.

A mesh of 44 points in the flow direction, 32 points in the spanwise direction for the full
span, and 26 points in the vertical direction was used. The finite difference region
extended about one chord length in front of the leading edge and behind the trailing
edge, about seven chord lengths above and below the wing surface, and slightly more
than a semispan beyond the wingtip. The rerun has permitted a comparison of running
times between the original program, using a KRONOS 2.1 operating system on the CDC
6600 using the RUN compiler and the current program using an FTN compiler. The
average number of CPU seconds per iteration is now approximately 2 compared to about
8 before, and approximately 2% CPU seconds per far-field update compared to 9 before.
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For the case shown the converged solution (in this case the ERROR of eq. (9) was to be
less than 10 ) was of the order of 180 iterations with the initial unsteady velocity
potential distribution set to zeros.

Figure 16 shows the steady-state pressure distribution for a NACA 64A006 profile,
which was obtained using a program developed by Ballhaus and Bailey (ref. 20). The
jump in pressure coefficient due to harmonic pitch about the planform leading edge is
shown in figure 17, with three different results presented. The first results are from the
NASA subsonic unsteady three-dimensional airloads program using linear theory (refs.
15 and 16). These should compare directly with the second set of results calculated
using the finite difference program and a flat plate airfoil section. The third data set is
from using the finite difference program with the steady velocity potential distribution
from the nonlinear steady-state solution for the wing with a NACA 64A006 profile. In
addition, a two-dimensional result from finite difference theory for the same airfoil
section is shown in the planform root plane.

Generally, the linear results correlate very well with the corresponding finite difference
results for a flat plate. The results including thickness display the pressure rise in the
neighborhood of the shock that has been characteristic of corresponding experimental
measurements (for example, see ref. 10). The three-dimensional results show a
significant softening of the pressure rise in comparison with the two-dimensional
results. Of concern is the apparent intensifying of the shock effect at the midpoint of the
semispan of the wing. The reason for this result, which is not expected physically, is
currently attributed to the way the finite difference operators are handled. The program
is written to use central differencing for subsonic points (as determined from steady
flow) and backward differencing for supersonic points. An abrupt change in the pattern
of subsonic and supersonic points occurs on the chord adjacent to the one with the
sharpest shock effects.

In an attempt to smooth out the shock effects spanwise, a shock point operator in
conservation form was introduced into the three-dimensional program. The derivation of
the operator is given in appendix C. The result of using the shock point operator was to
(1) significantly increase the effect of the shock on the unsteady pressure distribution
and (2) smooth out the spanwise pressure distribution in the neighborhood of the shock.
A comparison of distributions calculated with and without the shock point operator is
shown in figure 18. Note the significant increase in the magnitude of the pressure rise
due to the shock at the wing root, with a much smaller increment in the rise at
midspan. No experimental data are available at this time for comparison purposes.
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8.0 SUPERSONIC FREESTREAM

Of significant interest is the inclusion of transonic flow effects in the calculation of
oscillating air forces where the freestream flow is slightly supersonic. Of particular
interest to the current work is whether or not the relaxation solutions become unstable
in the same fashion when the freestream is supersonic as when it is subsonic.

The differential and finite difference equations are the same for both the subsonic and
supersonic freestream cases. The flow characteristics are sketched in figure 19, which
shows the boundary conditions that were used in a pilot two-dimensional program. The
unsteady velocity potential at the upstream boundary is set to zero. Since the flow is
supersonic at the downstream boundary and backward differencing is used in the

) 1 _
Bqy +iwd, +TR_¢1Y_ 0

+—4
+ +
-i' +
T +
':- +
+ 4 | F e o+ ++ ++++ 7+ 4+ 4+ 4
i <
+ + 7

yd
+ + /

yd
/

Forward facing Mach cone
+ + S - from trailing edge
+—
Ny’ , 1
$1=0 Pix Tiwd - g oyy =0

Figure 19.—Boundary Conditions for Problem With Supersonic Freestream
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supersonic regions, boundary conditions need not be specified at the downstream
boundary. Porous wall boundary conditions were convenient to use on the upper and
lower boundaries. In practice, however, these boundaries should be set far enough out so
that they do not affect the flow over the wing, and thus the pressure is independent of
the porosity factor.

As discussed by Traci et al. (ref. 9), the flat plate problem in which the steady-state
velocity potential is constant may be solved by a single downstream pass with the
relaxation procedure since nowhere in the flow is any point affected by points in the
downstream columns. The problem of mixed flow with the pocket of subsonic flow buried
within the supersonic flow is quite a different matter. Traci et al. noted relaxation
solution instabilities in the neighborhood of M = 1.0 and, for the supersonic case,
obtained two-dimensional solutions at M = 1.10 but not at M = 1.05. A priori, one may
suspect that the finite subsonic region will have properties similar to the finite mesh of
the subsonic freestream case, which results in instabilities in the relaxation process.

In practice, numerical examples do not appear to admit such a simple explanation. A
circular-arc airfoil was analyzed at two Mach numbers, M = 1.05 and 1.15. A simple
pitching oscillation was studied. Some of our results have the characteristics of
converging for a number of iterations and then diverging. Here the maximum difference
between ¢ for successive iterations was used as a measure of convergence. If the
convergence criteria were met before the divergence started, one would assume that one
had obtained a valid solution. Under these circumstances, the use of overrelaxation
factors (ORF) and underrelaxation factors (URF) other than unity increased the
tendency for divergence. Hence, the calculations were run with ORF = URF = 1.0. The
net result was that M = 1.15, with a relatively small subsonic region, the convergence
characteristics were improved by raising the reduced frequency. At M = 1.05 with the
attendant large subsonic region about the airfoil leading edge, convergence was
improved by decreasing the reduced frequency. This latter behavior is what would be
expected from experience with the subsonic freestream problem.

These examples were rerun using the shock point operator of appendix C. Use of the
operator noticeably improved the convergence characteristics at both Mach numbers but
did not eliminate the relaxation solution instabilities.

A summary of convergence experience with the supersonic freestream is given in table
3. The table includes runs both with and without the shock point operator and includes
a general description of where the maximum ERROR occurred for both converging and
diverging examples. Since these calculations have been made with a limited number of
variations in parameters such as the location of farfield boundaries, the number and
spacing of mesh points, and the location of mesh points with respect to the sonic lines
and subsonic regions, it is felt that firm conclusions are, as yet, unwarranted.

There appear to be stability problems with the relaxation process in the supersonic
freestream problem as well as with the subsonic problem. We suspect both have the
same origins; that is, the eigen characteristics of the problem. However, numerical
examples with the supersonic freestream problem do not give consistent convergence
divergence behavior at M = 1.05 and M = 1.15. It is assumed that a full direct solution
as described previously would provide solutions, but this has not been tried.
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Table 3.—Comparison of Convergence Characteristics of Supersonic Free-stream
With and Without Shock Point Operator (SPO)

Reduced M= 1.05 M=1.15
frequency,
w With SPO Without SPO With SPO Without SPO
0.015 Converges Converges
% Subsonic area *|n front of subsonic - —
¥ 3.56E4 region off wing
0.03 Converges Diverges Diverges Diverges
* Aft sonic line % Front sonic line * Peak of subsonic * Peak of subsonic
X 3.4E-4 region region
0.06 Diverges Diverges Converges Diverges
* Aft sonic line * Aft sonic line * Aft of subsonic * In front of subsonic
region on wing region off wing
- 2.0E4
0.12 Converges Diverges after
_ o * Aft of subsonic 3b iterations
region on wing * [n front of subsonic
% 1.6E-4 region off wing
0.24 Converges Diverges after
_ _ * Aft of subsonic 40 iterations
region on wing % Front sonic line
& 0.8E-4

ORF=URF=1.0

¥ Maximum error after 100 iterations
# Location of maximum error
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9.0 PROPERTIES OF THE RESIDUAL

It is customary for both steady and unsteady transonic finite difference solutions to use
ERROR rather than the residual as a criterion for relaxation solution convergence.
ERROR is the maximum difference between successive potential distributions divided
by the relaxation factor as defined in equation (9). The residual is the difference
between the right-hand side and the system matrix times the current approximation
when the set of equations is written Ap;=R. This section summarizes a brief study of
the characteristics of the residual with respect to the unsteady problem.

First, it is noted that numerical examples, which are presented in appendix D show
that a residual of the same order of magnitude as ERROR may be obtained by scaling
the residual value with an associated area. For the purposes of this report, the
RESIDUAL at a point ij is defined as the product of the value of the difference equation
by a term proportional to the local mesh area, viz.
1 = X441 — Yj1)
4
It is shown in appendix D that RESIDUAL may be interpreted as the excess (or deficit)
of the mass flux within each mesh in the flow field. Since for an exact solution of the

difference equation, this should be zero, it is also a measure of how close the relaxation
solution is to being converged.

It can be shown that RESIDUAL and ERROR curves, when plotted on an
iteration history curve, should be essentially parallel to each other. A mathematical
explanation of this phenomenon is also presented in Appendix D along with numerical
examples for illustration purposes.

Generally, it is not convenient to use the residual (or, for that matter, RESIDUAL) as a
convergence test since evaluation requires a separate pass after all the velocity
potentials have been updated.
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10.0 AEROELASTIC ANALYSES

Calculating air forces for flutter analyses can become very expensive when using the
more complex aerodynamic procedures such as the method of this report. This is due to
forces being functions not only of Mach number (as for steady-state analyses) but also of
reduced frequency and due to the need to calculate pressures for a set of modes
(generalized coordinates), which may number from 10 to 20 or more for low-aspect-ratio
configurations. Also, flutter analyses are often required for small perturbations in mass
and/or stiffness distributions from the basic configuration and, in general, this means
recalculation of the generalized air force matrix. The question arises as to how the
recalculations of the air force matrix can be handled most efficiently with respect to the
procedures of this report for unsteady transonic flow.

It is first noted that the basic differential equations are linear with spatial varying
coefficients. The resulting air forces are thus superposable and may be directly used in
conventional flutter analysis formulation.

Next, the two kinds of numerical solutions to the finite difference equations that have
been discussed are the line relaxation procedure and full direct solution. The former,
which permits the solution to be calculated in sequences, is preferred because of the
large number of finite difference points (and thus the large number of equations) even
for two-dimensional problems. Indeed, it may well represent the only practical solution
method for three-dimensional analyses. However, line relaxation does have instability
problems for larger values of Ay. It was concluded in section 5 that for combinations of
Mach number and reduced frequency where relaxation solutions are unstable, the most
feasible method is the full direct solution. In matrix form, both of these procedures are
written as

mxm mx | mx]l

[A (M, w)] {‘pl} _ {R} (20)
It is assumed that outgoing wave boundary conditions are used on the far-field
boundaries so that {R} does not depend on ¢¢’s. Also, the matrix sizes have been
indicated above the equation. Here, m is the total number of finite difference points
interior to the outer boundaries. The matrix {R} is a function of surface deformation
(the mode shape) so that equation (20) may be rewritten as

mxm mx|1 mxn nx1 (21)

oo F70)- e[}

The matrix [Tpw(w)] calculates the boundary conditions on the right-hand side from

the modal matrix {fl(S) . Here, n is the number of aerodynamic control points on the
airfoil or wing and the superscript s denotes the mode shape. The size of n is expected to
be on the order of 40 for the two-dimensional problem and on the order of 300 for the
three-dimensional problem.
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With respect to the direct solution, it is easy to conceive of an influence coefficient

‘matrix that would be independent of structural characteristics; that is, a matrix which

when postmultiplied by a modal matrix and premultiplied by its transpose would
provide a set of generalized air forces directly. For example, equation (21) may be
rewritten as

mx1 mxm mxn nxl

|&P1(S)} =AM, w7 [Tpy (w)]{f@ } (22)

The pressure is obtained by operating on the ¢;’s,

nxl1 nxm mxm mxn nx |1

{Ap(s)} = [Tyl [A M, w171 [Ty (@)] {f(s)} 23)

The transformation matrix [Tp] transforms the velocity potential to the pressure
distribution, and the generalized air force Qrg is found from

Ixn 5 nxl

n
Qrs = | 1] (1) ‘Ap(s)! 24)

where the matrix [TI] performs the necessary integration of the product of the pressure
due to mode s times the r mode shape. Substituting equation (23) in equation (24), we
have

Ixn nx nxl

n
Qs = LD ([TI] [T,) A M, )] ™! [Tpy (w)]) { f“)} (25)

and the matrix product enclosed by the parentheses is just what is desired and is a
complex matrix of order nxn. This represents a very manageable matrix in terms of size
and number of operations to obtain Qpg.

However, the critical problem is the size and banding characteristics of the matrix
[A(M,w)]. For example, for practical two-dimensional problems, m will be
approximately 1000 to 2000 and for practical three-dimensional problems it will be
approximately 25 000 to 50 000. Also, [A(M,w)] ‘is complex, which essentially doubles
its storage requirements. Here significant advantage can often be taken of the special
case of flow symmetry with respect to the plane of the wing. While this may result in a
two-dimensional problem of manageable size, it does not appear to do the same for the
three-dimensional problem. An important characteristic of [A(M,w)] is that it is banded;
therefore, both [A(M,w)] and its LU decomposition form can be stored in significantly
less space than the complete matrix. Thus, in practice, the inverse of [A], which would
be a dense matrix, is not calculated. The unknowns that are found are the ¢;’s of
equation (21) or (22), and the solution is found from the LU decomposition by back
substitution.



The authors are not familiar with the capabilities of the current generation of STAR
machines or plans for the next generation. It may be that the increased capability of
these machines could solve the problem as posed. Also, the capabilities of sparse matrix
routines have not been thoroughly investigated. It would appear feasible, however, to
actually obtain the inverse of [A(M,w)] for two-dimensional problems of practical size
but not for three-dimensional problems.

The alternative would be to calculate the transonic air forces in terms of a limited set of
reference modes. Then as the mass and/or stiffness distributions of the basic structure
are changed, the new natural modes of the modified system would be found as a
superposition of the reference modes. In the same fashion, the generalized air forces for
the modified system would be obtained as a superposition of the air forces for the
reference modes. These reference modes would usually be the natural modes of the basic
configuration.

The generalized forces for the reference modes (or any other set of modes), if the inverse
of [A] is not available, would be calculated from a sequence starting with the solution
for {<p1} in equation (21) using LU decomposition. It is noted that LU decomposition is
done once and the results are stored so that obtaining{¢ }for new modes is relatively
efficient. The column of generalized forces is then found from the matrix triple product

rx 1 rxn nxnnx4n = 4nxl

[o) =0T () { 7@ )

The{ q:l(S)} is a subset of the full{cpl}matrix from the solution of equation (21). The
matrix product enclosed in the parentheses may be calculated once and stored for future
use. The integer r is equal to the number of reference modes used, which would be
expected to be approximately 20 or 30. Generally, it appears that obtaining the ¢;’s for
additional reference modes will take less time than was required to do the LU
decomposition.
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11.0 CONCLUSIONS

This report has further explored a particular finite difference formulation for analyzing
unsteady transonic flow over harmonically oscillating wings. The preferred numerical
solution process of line relaxation has proved unstable for ranges of Mach number (both
subsonic and supersonic) and reduced frequency of direct interest in flutter analyses.
Although no means were found for extending the range using relaxation procedures, a
direct solution of the complete finite difference mesh was shown to produce solutions at
subsonic Mach numbers outside the range of solution convergence for the relaxation
process. It is surmised that the direct solution could also be applied to flows with a
supersonic freestream Mach number as well.

Because of limited computer capacity, the direct solutions obtained were for a coarse
mesh, and accuracy was observed to decrease with frequency. The means for improving
the accuracy of the direct solution are indicated by a study of a similar one-dimensional
problem for which exact, analytic solutions were readily obtainable for comparison with
the solutions from the finite difference analysis. The accuracy of the finite difference
procedure was found to be proportional to h A13so that the mesh spacing must be varied
inversely to the 3/2 power of frequency if accuracy is to be retained. For the higher
values of reduced frequency at values of Mach number close to 1, this will mean
working with very large sets of finite difference points. How the use of nonuniform
mesh spacing will affect this conclusion has not been examined.

In addition to the general error level, large excursions in error are caused by the
presence of real eigenvalues associated with the mesh region and the far-field boundary
conditions. These excursions can be supressed in the one-dimensional examples by
proper selection of boundary conditions that result in the replacement of the real
eigenvalues by complex eigenvalues. Since these boundary conditions are in the nature
of outgoing waves, it is assumed this can be done in the two- and three-dimensional
analyses also.

The three-dimensional program developed in reference 5 was extended to analyze wings
with swept leading and trailing edges, and solutions for both a moderate-aspect-ratio
rectangular wing and a low-aspect-ratio, clipped delta wing are presented. The pressure
distributions appear reasonable although, as yet, no experimental results are available
for correlation.

A conservative shock point operator has been derived for use in two- and
three-dimensional analyses. In the rectangular wing analyses, use of this operator
significantly increases the effect of the shock on the unsteady pressure distributions and
smooths the spanwise distribution of pressure. In relaxation calculations for a
supersonic freestream, use of the shock point operator extends the range of convergence
but does not remove the relaxation instabilities.

Boeing Commercial Airplane Company
P.O. Box 3707
Seattle, Washington 98124
November 1977
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APPENDIX A

ONE-DIMENSIONAL PROBLEM

A.1 PROBLEM STATEMENT

To gain insight into the accuracy obtainable by using direct solution methods as well as
the relaxation solution stability problem, a one-dimensional version of the flat-plate
small perturbation equation was investigated. This equation, which is obtained simply
by dropping the ¢1yy term from the two-dimensional equation, is

2iw 2

W =
Kgolxx—-—e-gplx'f'—e' (pl-O, w>0

or, dividing by K and using €K = (1 - M%)/M2

0] =2\ Mp; +2 2 (1-M2)p; =0 (A-D)
XX X

where A\; = oM/(1 - M2). The problem then was the solution of equation (A-1) for ¢1(x)
on an interval x = a to x = b with specified types of boundary conditions; i.e., a
two-point boundary value problem.

The problem was numerically solved by discretizing the derivatives with second-order
approximations on a uniform mesh, as the two-and three-dimensional cases in reference

5 were solved. The numerical problem thus becomes one of solving a linear system of
the form Ag; = B, where A is a tridiagonal matrix and B depends on the boundary

conditions. The solution was obtained with the tridiagonal solver used for each row of
the two-dimensional row relaxation solution.

A.2 ANALYTICAL RESULTS

The advantage of experimentation on such a simplified problem is that analytic results
are readily available for comparison with numerical calculations to obtain accuracy
information.

To begin, we observe that the general solution of equation (A-1) is given by

iNg(1+M)x - (1-M)x
p1(x)=Cye +Coe (A-2)
where C; and Cy are independent of x and are to be determined by the boundary
conditions. We note that in general ¢; contains components of substantially different
wavelengths, in fact in the ratio (1 + M)/(1-M)= 19/1 “for M = 0.9. Since
approximation of the shorter wavelength component is less accurate for a given number
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of mesh points than the longer wavelength component, we would expect the error to be
larger when C; is such that this component is significant, regardless of the value of A;.
This was indeed found. (See fig. 4.) Since Cy and Cg are determined by the boundary
conditions, we turn next to consideration of these. In their most general form, these are

oy +ﬂ1¢1=71 at x=a
x (A-3)

(X2901x+62(p1 =’)’2 at X=b

where the ¢j, B, and y; are independent of x. Special cases of these conditions include
Dirichlet (ay = ag = 0, 81 = Bz =1), Neumann(a; = ay=1, B8; =82 = 0),and the third
kind ((21 = a9 = 1, Bl # 0, ﬂz # 0).

Since C; and Cp are determined from the boundary conditions, the choice of the
constants in equation (A-3) will clearly affect the accuracy of the solution. There is a
less obvious way in which thé choice of these constants affects the accuracy: certain
choices will lead to nonuniqueness of the solution, which is reflected as large increases
in the error for certain reduced frequencies. To be more precise, for certain choices of
ay, By, ag, and By, there are values of Ay (eigenvalues) for which nonzero solutions
(eigenfunctions) to equation (A-1) with y; = yo = 0 in equation (A-3) will exist.
Information is easily obtained as to the values of the a and B8 constants in equation
(A-3) for which real eigenvalues exist. Substitution of the general solution equation
(A-2) into (A-3) with y; = yo = 0 yields a 2 by 2 linear system for C; and Cs. In order
for this homogenous system to have a nontrivial solution (i.e., for eigenfunctions to
exist), it is necessary that the coefficient matrix be singular (i.e., have a 0 determinant).

When the substitution is made and the determinant set equal to 0, one obtains, after
some simplification, the relation:

[\ (ozlﬁz—ozzﬁl)] cos )\1 (b-a)

L lagagng 2 (1 -M2) + B 6] +i7\1M(a1[32+a261)lsin A (b-2)=0 (A-4)

Note that if either the coefficient of the cosine term or the sine term is 0, then real
values of A; exist for which equation (A-4) will be satisfied; for example,

7\1 = b——é’ m= 1,2, ....... (A-5)

This will clearly be the case for Dirichlet (@ = a3 = 0, 8; = B2 = 1) and Neumann (ay
=ay = 1, B8; = B2 = 0) boundary conditions, since the coefficient of the cosine term is
then 0. The same is true for boundary conditions of the third kind (a; = @g = 1) when

B1 = B2.)

There are other values of the a’s and 8’s which lead to real eigenvalues; for example,
values such that the coefficients of both the sine and cosine terms are real or pure
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imaginary. Of more interest, however, are values such that equation (A-4) cannot be
satisfied by real A; . Such values can easily be obtained using mixed boundary
conditions. For example, specifying ¢; at X = a and ¢jx + iw(1 - M)e at x = b implies
that in equation (A-8) a; = 0, 8; = 1, ag = 1, and B3 = iA;(1 - M). Substituting these
values into equation (A-4), we find that this equation becomes

i\ (b-
e 10 g

which cannot be satisfied for real A; = 0. Thus these boundary conditions do not permit
real eigenvalues. Similarly specifying ¢1x - iA{(1 + M)y at x = a and ¢71 at x = b
implies @y = 1, B1 = -iAq(1 + M), ag = 0, and B89 = 1, which when substituted into
equation (A-4) yields the equation

iNj(b-a
ae 1 '=0

which cannot be satisfied for real A\; . 0. Thus again the boundary conditions do not
permit real eigenvalues. The difference in the behavior of the error for real and complex
eigenvalues is illustrated in figure 5.

Some idea of the error introduced by discretization of the analytical problem may, at
least in the case of Dirichlet boundary conditions, be gained from the literature. In ref.
18, Fischer and Usmani have shown that for the problem

VA2 ¥=0, xelab]

Y(a)= 1y, Y(b)=yy

when " is replaced by the usual second-order finite difference approximation on a
uniform grid of spacing h, the maximum absolute error, En,x, satisfied Epay < Eq,
where

E;=h%my N/[12sin 6 * | sin (N+ 1) 0]]

where
_  max |
m4—xe[a’b] (,[/(IV)(X) cosfd = I_Ehz Alz
_b-a
=5

When hi; is small, we have 6~h\, and
Ey~hZmy (b-a)/l128)3/ 170222 Isinky (b-a) |}

Since ¢ = D, sin )\}3 x+ Dy cos A1X, we have my = DA14 for some constant D, so that E,
behaves like EhZA;%/| sin A4(b - a)|, with E some constant.

57



Now since equation (A-1) for ¢; may be transformed into ¢" + )\lzl,ll = 0 by the
nonsingular transformation ¢; = ye'A1,"¥ it is not unreasonable to expect the error in

the numerical solution of the discretized version of the ¢ problem, and this in fact was
found to be the case. (See fig. 6.)

The results and conclusions from this analysis are presented in section 5.1.

58



APPENDIX B

EVALUATION OF FAR-FIELD WAKE INTEGRAL
FOR AN ARBITRARY WING

We consider the evaluation of the field wake integral given in equation (B-1) of
reference 5, namely,

+yt _ (
__1_ lth yl’) ’ . !
‘le(xl’yl’zl)‘47r f e Awlt(yl )dy {
—iwx ! a ’ r ’ r
. e la—z’f—,(xl—xl,yl—yl,zl—zl )dxl (B-1)
x¢(y1")

where the partial derivative is to be evaluated at

1,[/ _ e—D\] [M(X I—Xl')—R]

and

R=\/(X1 ~xN2H (v -~y 2y

As before, the evaluation will be carried out for x; = 1.0. The trailing-edge function will
be assumed to be a single-valued function of the form

Xee (V1) =1 +1f(y1")

where f(y;') =0 for -y;<y;'<yt, but is otherwise arbitrary. For the rectangular wing, for
example, f(y;) = 0, while for the swept wing with straight trailing edge,
fly1) = a- | y1’| , where a is the tangent of the sweep angle. A more general example is
given in figure (B-1).

iw-1.0

Equation (B-1), after taking e into the x;'-integral, becomes

ty
I [ Wity (")
1,yy,21)=7— A dy”
solw( Y1:21) = g7 J,. e solte(yl) Yi

o0 » ,_]
. . iw(xy'-1 Y

azl(l—xl',yl-Y1',21—Z1')dX1' (B-2)

X)'=14(y])
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Let I, be the inner, x;'-integral

= —-iw(xy-1) 8y , , , , (B-3)
IW=_/, e: a—z—-,(l—xl,yl—yl,zl—zl)dxl
x1'=f(y1" 1

setting p = x;’ - 1 and inserting the expression for ¢ yields

e -] (Ry+tM -

R, = p2+Rp? and R02=(Y1—Y1')2+(21‘21’)2

Taking the 3/0z,'outside and combining the exponentials, we obtain

with

N M(w + \; M)
oo e—lM— MRl + ———)\l P (B-5)
_ 0 d
w= 327 R P
1<ty
or since
7
wM~
M((JJ + 5 )
M(ew + A M) _ 1-M2 /_, (B-6)
Al WwM/(1 - M2)
A
*®  -i—= (MR +p)
L, = o e M 1 dp
fy1")
Next, let
MR, +
Bl B (B-8)
BRg
When
, M2y ) + Rp2 +f(y;") (B-9)
p=1f(y), u= iR, =u,
and as
p——)oo u—>co
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Further

v
] +ul= EII—Q) [52R02 +M2 (p2 + Rg2) + 2MRp + pz] ’

which becomes, using 32 = 1-M?

Y
1 +u? —1—[R02 +p2 +2MRp + M2p2] i

Ry +Mp
_ 1 2 2 2]1/2_ 1
=——| R{“+2MRjp+M =
5R0[ : 1P g BRg
and
@ZI_[MMR o] o RiEMe Viey?
P PRy 1 R BRg Ry
80
Iw=£_’ fe—M—du
. ul V1+U2
Now, let u = v + u; so that
NiBR
(3 0(V+Lll)
d

o —i
L = _a_,f e M 4
w
azl 0 \/1+(V+L11)2
The singularities of the integrand are where
1+ (v + ul)2 =0

or

V=—u1 +i

(B-10)

(B-11)

(B-12)

(B-13)

(B-14)

(B-15)

Now from equation (B-9) and the assumption that f(y,’) = 0, it follows that u;>0, so the
singularities are in the left half of the complex plane. Thus, applying Cauchy’s theorem

to the contour integral

A1BRg

-i (vtuq)
M 1 d

I, = S v

o ) Vi+e+up?

(B-16)
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where the contour is shown in the following sketch

 Im )
- ! » Re (v)
Cy
Cs.
C2
-ir
Then, ¢ = ¢; + cg + c3 and
I, =1 +1 +1 =0
WC WCI WC2 WC3

and
—> o0

I=limiI=lim __B_I__a_l
W rsewdz)” €1 0z]" "¢ o0z)’ ¢3

As r -, then integral IWC2—>O. On the contour Cy, v = re'“9 O<@=mla,

Iw

and . _IA]BRO(UI/M) [7T/2 e"l)\]B(RO/M)I’ exp(—i@) e__ie
= -1re

) b 1+ Texp-io) +uj)?

For r sufficiently large, the denominator of the integrand is =r/2.

w2 _ )
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de

63



Thus, we have

_ lim o
Ly == o0 527" IWC3 (B-19)

On c3,v = in and dv = idy so that

ABRg
0 e—l ——M (117+u1 ) dn (B-20)

I, =i
Wes ARVY + (in +u;)?

or letting n = -y
ABRg
r TNV (ul—m)
L, =i [ & dn (B-21)

B N V1t -in?

The next step is to find the partial derivative in equation (B-19). We note from equation
(B-9) that u; is a function of Ry and therefore of z;’ and thus we must also differentiate
uy. It appears simplest to move the u; dependence to the limits before differentiating.
Letting u = u; - in, then du = idy, or dp = -idn, and when n = 0, u = uy; whenn =,

p = uy —ir, so,

uj-ir e—i?\lﬁRO(y/M)

I = f s du
WC3 2

uj 1 +u

—_Q , {_(Eiul)[e'i}‘lﬁ(ul_ir)/M e-l?\lBRoul/MJ

iz w 3z -
21 Veg Ui -in?  V1+u2
ful—ir 5 e—i)\IBRop/M } B2
+ -' _———d# -
azl 1+2
Ul M

Performing the differentiation, the integral becomes

-iN ] BROu/M

I B (/M) e R
5 du - 321
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or, transforming back to 5
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Substituting equation (B-23) into equation (B-22) and taking the limit as r +*, we have

_d g =e"i>‘15Rou1/M[ 1 <d“1>

>

oo i _ R
JME _Wimim MPReiM - dRo (B-24)
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Let I,y be the integral in equation (B-24). Integrating by parts with

-\ 18Ron/M ujg —-in
u=e 1P 07?/ dv = 1
V1 + (g -in)?
then
-N\1BRan/M
du =N B(RoM) e 1P oM g,
and

v=iy/1+ (ug - in)?

from which
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Making the transformation r = A;8R¢n/M, we have
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or




The final calculation required is that of 86,/8z;'. Since u; depends on z;’, only through
Ry, 8u,/02z1" = (duy/dRg) (0R(/0z1").

MYy + R+ Gy

u1 = ﬁRO

From equation (B-9),

from which
duy M uj
dR~ "R (B-26)

dRy R,
BV/E(y1)? + Ry?

Finally, substituting from equations (B-25) and (B-26) into equation (B-24), and using
equation (B-19) and the fact that dRy/dzy’ = (z,’ - z1)/Ry, we have for z;' = 0,

-\ BRGT /M
2,6 MPRoUL/

lvmn o )
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1)\ -B 1+'ﬁ]2+f \/62 Uy - s 2 e ar (B-27)
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where the bars signify evaluation at z¢’ = 0. That is,

Ry=v(y;-y(N?+2;?
M2 (y1) + Rg2 + £y ")

AR
The integral in equation (B-27) differs only slightly from that given in reference 5 and
may be evaluated by the same method, Gauss-Laguerre integration.

and

ﬁl=

Thus evaluation of the far-field wake integral is reduced to using equation (B-27) in
equation (B-2) with the appropriate expression for the trailing edge.

Specialization of equation (B-27) for the straight swept trailing edge is immediate,

consisting only of taking f(y,’) = a|y1’| where a is the tangent of the sweep angle
measured back from the y;’ axis.

A check is available by comparison with the rectangular wing case. Taking f(y;’) = 0,

we have
up =M/ and 14T%=1/8
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so that equation (B-27) becomes

Z] —iA{Rn)iA o0 . 2
I, =obe 'l 0{——1[—1+f %2‘* M- e‘Td'rjl}
w RO M 0 RIRO

as was previously obtained. .

Acknowledgement. Calculations performed by R.W. Call toward extending the
treatment in reference 5 to the case of the sweptwing with straight trailing edge have
provided useful insights for the general treatment given here.
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APPENDIX C

DERIVATION OF SHOCK POINT OPERATOR

When a rapidly decelerating flow is supersonic upstream of the point i, j (uj_1;,;<0) and
the flow becomes subsonic downstream of the point uj.;/2 ;>0), a shock wave then lies
close to the point i, j. To satisfy the appropriate jump conditions across the shock, the
difference operator for the point i, j must be conservative. To obtain such an operator,
we apply the divergence theorem

f v-Fdv= fﬁ-ﬁds (C-1)

v S

to the differential operator expressed in conservation form for the control volume
consisting of lines drawn midway between consecutive columns and rows of mesh points
as shown in figure C-1. Here n is the outward normal to the closed surface. We shall
consider only two-dimensional flow, but the generalization to three-dimensional flow
requires only the addition of the central difference operator for ¢y, at the point i, j, k.

[0} ® ® ®
i-2, j+1 i-1, j+1 i, j+1 i+1, j+1

.® . © ® Qy ®
i-2, § i-1, ] ii i+1,
@ ® ® ®

i-2, j-1 i-1, -1 i, j-1 i+1, j-1

Figure C-1.—Control Volume for Shock Point Operator
The basic partial differential equation, equation (17) of Ehlers (ref. 1), has the form

(Lupl —Ziwgol/e) +p; +qp=0
X X Yy

Hence, the vector F is
F=up| -2iwp|/e, ?1
X y



e

and the approximate evaluation of the surface integral in equation (1) ylelds

u ] Px o mu 3wy, —liofe g -p 3\/e
Qy l+§] i+21 1—:2- 1_%1- 1+§] 1—2]
+ 89y Py 1 anpy i +qj Qny¢1J =0
1]+2— 1]—2-

where i+% denotes the value of the quantity at the point midway between x; and xj41;
and similarly, for the other half integer subscripts. Dividing the equation by R 2 puts
the equation in difference form:

L LPx o TW 3 ¥x g My - 2Gwle) fo | —v 3 |/2%

2J 1+§j 1"2‘] 1—5] 1+§_] l—i‘l
ey 7% /Ry * ;535 = 0 (C-2)
1_]+§ 1_]_2_

=1f(x 1-x Oy HIx =X Oy, | /[x 1%
) (y o) ey 2)

We substitute the central difference operator for exy and upwind difference operator for
Pxy; and obtain

= DXy [C 2j(P3j = #i1j) ~ d1i-1 Wiy “pi—Qj)]/(DXI +DX3)

+ DX2 [Cll (‘pi'f'lj - ‘plj) + dll (kpu - ”Di—lj)] /(DXI + DX2) (C-3)

where DX; = xj - Xj—g, DXg = Xj4+; - Xj—1, and c¢yj, d;i, and cpj are given in equations
(19), (20), and (26) of reference 1.

JLfx o 3 Px /2y
2J i+l 1——1
2
=Dy [2Ci-1 u - vie1p) - 2djo1 v 3 (@5 “pi—2j)]
=5] =53

+Dy [2Ciu. 1 i1y - o)~ 2450 1 (- v ] (C-9)
1+§] 1—-2-] J
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with D; = DX;/(DX; + DXj) and Dy x DXy/(DX; + DXjy). The y derivative becomes

v~ (v,

el %y 1 )/Qy = 289351 — 2(25 by 55 + 2b; w50

_ (C-5)
2 97

where a; and b; are given in equation (23) of reference 1.

Finally the difference equation at the shock point ij is obtained by substituting
equations (C-3), and (C-4), and (C-5) into equation (C-2). After some simplification, we
obtain

ajapij_l - (aj + bj + D2 El + D2E‘2 - D1E3 - qij/z) goij + bj Soij'*’l =

(DyE3 + DyEyq - DyE3) ¢i15 - D1Bg 1257 D2E) #4445 (C-6)
where

Ep=ciu | -lwcyj/e
1+§_]_

E2 = dl l.l. 1. +1&Jd11/6
1—2_]

E3 = Ci—l u - io.)Czi/E

I—EJ

Eg=dj_ju 3 -iwdyj /e
l—jj

When D; = 1 and Dy = 0, the difference equation (C-6) reduces to the hyperbolic
upwind difference equation; and when Dy = 1 and Dy = 0, it reduces to the conventional
elliptic central difference equation. For equally spaced points, D; = Dy = %. With this
value for Dy and Dy, equation (C-6) becomes the shock point operator used by Traci,
Albano, and Farr (ref. 9). When D; = Dy = 1, we obtain the shock point operator as
used by Murman (ref. 23). The present formulation as well as that of reference 9 yields
a form of the differential equation consistent with that at adjacent points, whereas
Murman’s does not.
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APPENDIX D

RESIDUAL ANALYSES

This appendix derives an interpretation of RESIDUAL as a mass flux and a
mathematical explanation of the reason why the RESIDUAL and ERROR curves as
plotted in a convergence history are essentially parallel. It also includes numerical
examples illustrating these concepts. The differential equation that we solve for the
unsteady flow potential is basically the equation for the conservation of mass at a point
in the flow. This is easily seen since it results from separating the continuity equation

pt/p+V Vo) tVe) *Vp/p=0

into steady flow and unsteady flow equations after Vp/p is eliminated by using
Bernoulli’s equation (see page 35 of Ehlers, ref. 1). The differential equation for the
unsteady complex potential can be expressed in the form (eq. (75) of ref. 1):

v. ﬁ + Q‘pl =0
where Q does not depend upon the unsteady potential ¢;, and the factor F= (F{,Fg,F3).

Consider now a rectangular parallelepiped of sides Ax, Ay, Az centered about the point
x,y,z. The mass produced inside the region is found by integrating the differential
equation over the volume. Applying the divergence theorem to the first term of equation
(19) gives us

AyAz [Fi(x + Ax/2,y,z)-F (x - Ax/2,y,2)]

+ AxAz [Fy (x,y + Ay/2,2) - Fp (x, y - Ay/2, 2)]
+ AyAx [(F3(x,y,z + Az/2) - F3 (x,y,z - Az/2)]

+ AXAyAz Q(X,y,2) 9 =0
Factoring out AxAyAz yields

AxAyAz ’[Fl(x +Ax/2,y,2) - F| (x - Ax/2,y, 2)] /Ax
+[Fy (x,y + Ay/2,2) - Fy (x,y - Ay/2, 2)] /Ay

t[F3(x,y,z+ Az[2)-F3(x,y,2~- Az[21/Az

+Q¢1}=O

The quantity in brackets can be recognized as the difference equation which we are
solving for the unsteady potential. The complete left-hand side of the previous equation,
which may not be necessarily zero, is the residual as used in this report and is a
measure of the excess (or deficit) of the mass flux within each mesh in the flow field.
Since for an exact solution of the difference equation this residual should be zero, it is a
measure of how close the relaxation solution is to being converged.
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A mathematical explanation of the reason why ERROR and RESIDUAL curves should
be essentially parallel is also readily axﬁailable. Block (i.e., row or column) syccessive
overrelaxation for the solution of Ag; = R may be written in matrix notation as

"-p'l (m+ 1)= (D + I'L)—l (—I‘U + (1 _ r)]))a(m) +r(D+ I'L)-l ﬁ

where D consists of the blocks on the diagonal of A; L and U consist of the blocks below
and above the diagonal, respectively; and r is the relaxation factor. (The special case
where A is Hermitian was discussed in ref. 5.) Replacement of U by A-D-L followed by
some matrix algebra yields the equivalent form

a] (IT]"‘I) — al(m) +T (I + rD—lL)—l D—] (E _ Aal(m))

Here the last factor on the right is immediately recognizable as the vector of (unscaled)
residuals. Multiplication of the residual vector by D™ effectively scales the residuals by
an area, similar to the scaling used in the program, since the primary components of
the elements of D have the dimensions of (area)l. Moving the first term on the
right-hand side to the left, dividing by r, and taking the maximum norm of each side,
we have

— -1 —
_;1_||—¢(m+l)_‘pl(m) I<ia+miLy -1t R _A¢1(m)) I

Now, the left-hand side is just ERROR, as previously defined, while the right-hand side
is just a constant times the maximum scaled residual. When this inequality is viewed as
providing an estimate of ERROR in terms of the scaled residual, it is clear that these
two quantities are roughly proportional. The essentially parallel nature of the ERROR
and RESIDUAL error curves on a semi-log plot in both convergent and divergent cases
is thus natural and expected.

Examples of the behavior of the maximum RESIDUAL with iteration for a
two-dimensional configuration are given in figures D-1 through D-7. Two different
maximum RESIDUALS are shown. The first, called an “INTERMEDIATE RESIDUAL”
is calculated after each line relaxation is completed. The INTERMEDIATE RESIDUAL
is computed using both old and new values of the velocity potential and, if the
relaxation factor is set to 1.0, it should be zero. In our calculations it is of
approximately 1071% for an ORF of 1. It is of interest mainly because it can be
calculated with the coefficients and velocity potentials available at the end of each line
relaxation calculation and thus may be obtained very efficiently. The second line shows
the true maximum RESIDUAL, which is calculated in a separate pass after all velocity
potentials have been updated. It includes the relaxation factor and thus reflects how
well the calculated velocity potential as scaled with the relaxation factor satisfies the
finite difference equation.

In figure D-1, results are presented for a flat plate example (no mixed flow) solved with
row relaxation using an ORF of 1.85. As would be expected from the preceding
discussion, the true RESIDUAL curve runs parallel to the ERROR curve, and in this
particular case the true RESIDUAL curve lies on top of the ERROR curve. The
INTERMEDIATE RESIDUAL curve lies above the other two. Figure D-2 presents the
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Figure D-1.—Sample ERROR and RESIDUAL Curves Versus Iteration for Row Relaxation,
ORF =1.85, M =0.9, w = 0.06, Flat Plate
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Figure D-3.—Sample ERROR and RESIDUAL Curves Versus Iteration for Row Relaxation,
ORF =185 M=0.9, ww=0.12, Flat Plate
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Figure D-4.—Sample ERROR and RESIDUAL Curves Versus Iteration for Row Relaxation,

ORF =1.85, M=0.9, «=0.06, Circular-Arc Airfoil
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Figure D-5.—Areas of Matching ERROR Values for a Converged Solution, Row Relaxation,
ORF=1.85,M=0.9, «&w=0.06
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Figure D-7.—Areas of Matching ERROR Values for a Converged Solution Row Relaxation,
ORF=1.70,M=0.9, w=0.06
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results for the same solution but with ORF = 1.70. This time there is a distinct knee in
the curves at about 50 iterations. After the knee in the curve, the true RESIDUAL
lies between the INTERMEDIATE RESIDUAL and ERROR. For this particular case
and with the level of convergence set at 10'5, an ORF of 1.7 would be better than an
ORF of 1.85. However, if the convergence criterion were set lower, then the ORF of 1.85

would be preferred.

For figure D-3 the problem has been changed by raising the frequency so that the
solution diverges. Again all three curves move together but in a far from smooth
manner. Both the ERROR and the INTERMEDIATE RESIDUAL provide a good
indication of what is happening to the solution. Figure D-4 presents ERROR and the
true RESIDUAL for a case with thickness, and again the two curves are essentially
parallel to each other.

Figure D-5 shows the ERROR distribution for a converged (maximum error less than
10°%) solution. The finite difference area below the wing is divided into levels of
ERROR. For example, the most converged points in the field according to the ERROR
criterion are in the uniformly shaded areas adjacent to the wing leading edge and near
the lower boundary beneath the wing. Figure D-6 shows the same type of plot for the
RESIDUAL. Here, the most converged portion of solution according to the RESIDUAL
criterion lies nearly uniformly under the wing extending from wing surface to lower
boundary. Figure D-7 shows the ERROR distribution for a different overrelaxation
factor (1.7 rather than 1.85) with the distribution quite different from that of figure

D-5.
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